
H2020-ICT 731761

Robots Understanding Their Actions by Imagining Their Effects

Deliverable D6.3
Planner software prototype for generalization

Lead Beneficiary: CSIC
Dissemination Level: Confidential
Due: Month 38 (2020-02-29)
Authors: Alejandro Suárez-Hernández CSIC

Javier Segovia-Aguas CSIC
Guillem Alenyà CSIC
Carme Torras CSIC

This report documents Deliverable D6.3: a software prototype for generalizing
the planning task that builds upon prototypes for action selection and replan-
ning. This software is based on the Automated Programming Framework (APF)
[2] which is used to generate algorithm-like solutions that generalize over a set
of planning problems. These solutions, named generalized plans[1], are pro-
grams with sequential instructions that execute planning actions, conditional
gotos that control the program flow and terminal instructions that terminates
program execution. Furthermore, APF encodes the programming and execution
tasks with the Planning Domain Definition Language (PDDL) which ease the
integration with our previous software prototypes. Thus, the planning system
follows the next procedure: (1) if there is no generalized plan, it computes a
new one given a set of previous experienced planning problems; (2) if no pre-
vious experiences or the generalized plan is not found, the software for action
selection is triggered; otherwise there is a generalized plan but (3.A) the mon-
itored action fails, in which case the new experience is included in the training
set and replanning is applied to compute a new generalized plan; or (3.B) the
monitored action succeeds and the execution of the generalized plan continues
until the goal condition holds in the terminal instruction.

V1.0 2020-03-23

1 Specification

1.1 Main track

In this Deliverable D6.3 we use previous software prototypes of action se-
lection and replanning preserving and integrating their functionality in the
new architecture for generalization. Thus, the new planning system consists
of 3 modules named (i) Action Selector,(ii) Replanner and (iii) Generalizer.

1.1.1 Action Selector

Action Selector was described in the first and updated in the second deliv-
erable where action costs are calculated using a beta distribution Beta(α, β)
with previous experiences. The probabilities of each action are inversely
proportional to the costs, which are used to feed a planner for searching the
sequence of actions that solve and optimize the planning problem.

1.1.2 Replanner

Replanner module, described in the second deliverable, deals with unex-
pected outcomes searching for a new plan whenever the current state differs
from the expected one after executing an action. This module extends Ac-
tion Selector by monitoring successful and failing action execution cases,
and improving the confidence on the former while decreasing it on the later.
Also, it triggers a classical planner to search for a new plan given the current
situation.

1.1.3 Generalizer

Generalizer is an independent module, in that either it solves the current
planning problem or it uses previous modules if a general plan is not found.
A general plan is an algorithm-like solution that applied in previous expe-
rienced disassembly tasks can solve all of them, so that can be applied on
new tasks. The general plan consists of 3 different kinds of instructions:
(1) planning actions, (2) conditional gotos, and (3) terminal instructions.
Algorithm 1 shows an example of a general plan to unscrew all screws from
an HDD, where the first line of the program chooses a specific screw to be
unscrewed from a component, the second line goes back to the first line while
there are screws in that fix components, and the third line terminates the
program while validating the goal condition holds, which in this case is true
since last line can be reached only if all screws have been unscrewed.
In order to compute general plans such as the one in Algorithm 1, it needs

2

do
unscrew(?c - component ?s - screw);

while ∃(?c - component ?s - screw) (and (fixed-by ?c ?s));
return ∀(?c - component ?s - screw) (and (not (fixed-by ?c ?s)));

Algorithm 1: General plan to unscrew all screws from components

the planning domain and at least one planning problem where all screws are
unscrewed from all components, an upper bound to represent the maximum
number of program lines, and a set of features that can be used as conditions
in the conditional gotos, e.g. ∃(?c - component ?s - screw) (and (fixed-by ?c
?s)).
Then, we follow a compilation-based approach, where all the input data is
compiled into a new planning domain and a single planning problem [3]. In
this new problem, the general plan is empty and a classical planner should
fill it with new instructions, like the ones in Algorithm 1, and execute it on
the new problem to get the sequence of actions. Disjunctions of planning
actions are allowed, but conditional gotos and terminal instructions must
be unique when programmed in specific lines (no disjunctions allowed for
them). Figure 1 shows how a planner with the general plan generates the
following sequence of actions given a problem with one component (c1) and
3 screws (s1, s2 and s3) that fix it. However, the only relevant actions to
execute are the ones that correspond to the original planning domain, in
other words the subsequence of planning actions, e.g. the subsequence 〈
(unscrew c1 s1), (unscrew c1 s2), (unscrew c1 s3) 〉.
While execution of planning actions succeed, this module follows with the
next planning action computed by the general plan. However, if the previous
planning action failed during its execution and unexpected outcomes occur,
then replanning is applied to find a new general plan to solve both the
previous tasks and the new problem, and action costs are updated with the
Action Selector module. In case this module fails on searching for a general
plan, the Replanner module is triggered as a contingency.

2 Implementation

The main tool is implemented as a C++ application. The software suite
is dependent on the Fast Downward planning system1, which is distributed
together with our prototype. A Python interface is included as well in order
to integrate our work with our previous deliverable. We include instructions
to compile and run a demonstrator that focus on the generalizer module.

1http://www.fast-downward.org/

3

http://www.fast-downward.org/

(unscrew c1 s1)
(eval−ex i s t−f i xed−components) ; True
(goto−l i n e −1)
(unscrew c1 s2)
(eval−ex i s t−f i xed−components) ; True
(goto−l i n e −1)
(unscrew c1 s3)
(eval−ex i s t−f i xed−components) ; Fa l se
(end−execut ion)

Figure 1: Classical plan generated from a general plan that unscrew all
screws from fixed components.

Our tool takes as input a PDDL domain and a set of instances which rep-
resent past experiences. These are used to generate a controller. This con-
troller takes the form of a program, with certain decision points meant to
be settled by the planning system. This program:

1. Provides intuition over the structure of the solutions for a class of
disassembly problems. A human operator can study these programs
and understand the reasoning process of the planner to come up with
solutions for new problems. These reasoning is updated whenever the
environment evolves in an unexpected way.

2. Guides the planner effectively towards a plan for a particular instance,
since the program imposes a common solution structure for a wide
range of problems.

3. Gives an effective mechanism to monitor and react to changes in the
current task, since the program is followed sequentially without re-
planning at each step.

An example of such program is shown at Table 1. This controller is obtained
from a scene in which the robot is presented with its first hard drive. This
hard drive is presented open and facing upwards.

Line Instruction(s)
0 switch-tool(...)
1 perfom-task-from-current-side(...) ∨ peek(...)
2 goto(0, !all-tasks-completed)
3 end

Table 1: Simple controller obtained after seeing one problem

4

Being this the first hard drive that the robot sees, the robot is not aware
of the components at the bottom side of the device, and thus there are no
instructions to operate on the other side. This program means:

• Line 0: switches the current tool for another one where (...) is the list
of arguments. The action to apply from the original planning domain
is switch-tool(?old ?new - tool) where ?old and ?new are decision
points where the planner is able to choose.

• Line 1: performs one of the available affordable tasks OR peek a dif-
ferent side of the device. Whenever a disjunction of instructions is
programmed in the same line, the planner must choose and execute
one of them.

• Line 2: proceeds to next line if all tasks have been completed, otherwise
goes back to line 0. The robot will be done when there are no remaining
tasks, i.e. components to retrieve, and all the sides of the device have
been seen at least once.

• Line 3: checks the goal is achieved and the terminates with the pro-
gram execution.

As the robot progresses in the disassembly of the device, it may discover
hidden components that could not be seen at the beginning. As this hap-
pens, our implementation tries to re-plan from the most recent state using
its current controller. If no plan can be found, a new controller is generated.
This happens when the PCB is discovered at the bottom side of the hard
drive, yielding the controller seen in Table 2.

Line Instruction(s)
0 switch-tool(...)
1 perfom-task-from-current-side(...) ∨ peek(...) ∨

flip-from-peeking-position(...)
2 goto(0, !all-tasks-completed)
3 end

Table 2: Simple controller obtained after seeing one problem

This controller is different from the one shown in Table 1 in Line 1, where
another instruction is present in the disjunction. This new instruction is
flip-from-peeking-position, and is required to flip the device upside down
so the robot can manipulate the other side (which is different from merely
peeking).
Interestingly, peeking only requires rotating the robot platform 180 degrees.
This is useful to take a look at the other side or perform minor tasks like

5

unscrewing. However, more difficult tasks (such as levering the PCB) require
that the entire device is flipped, or otherwise the platform will hinder the
movement of the robot. However, to this end it is necessary to have a stable
suction surface (like the lid) so the device can be suspended from the SCARA
arm. This means that if such surface is eliminated prematurely, (e.g. the lid
is removed before the PCB, and the PCB is loose so it cannot serve as an
anchor point), a deadend may arise. Such event also triggers a new program
generation.
More illustrative examples are provided in a Jupyter notebook2.

3 Availability

The software prototype this deliverable references is available as a release in
the IMAGINE Github organization (https://github.com/IMAGINE-H2020/
imagine_planning/releases/tag/D6.3).
The release has been marked with the tag D6.3 so it can be easily identified
for this deliverable.
The release comes with a README.md file that explains how to set up the
package, and how to use it. In addition, it comes with a proof of concept
demonstrator. The documentation states how to set up these components
and execute a minimal example.

References
[1] Sergio Jiménez, Javier Segovia-Aguas, and Anders Jonsson. “A review

of generalized planning”. In: The Knowledge Engineering Review 34
(2019) (cit. on p. 1).

[2] Javier Segovia-Aguas. Automated Programming Framework. https :
//github.com/aig-upf/automated-programming-framework. Ac-
cessed: 2019-11-12. 2017 (cit. on p. 1).

[3] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. “Comput-
ing programs for generalized planning using a classical planner”. In:
Artificial Intelligence 272 (2019), pp. 52–85 (cit. on p. 3).

2https://github.com/IMAGINE-H2020/imagine_planning/blob/ms3_devep/
csic_imagine_ros/csic_imagine_planning/csic_imagine_planner/d6_3/d6_3_
demonstrator.ipynb

6

https://github.com/IMAGINE-H2020/imagine_planning/releases/tag/D6.3
https://github.com/IMAGINE-H2020/imagine_planning/releases/tag/D6.3
https://github.com/aig-upf/automated-programming-framework
https://github.com/aig-upf/automated-programming-framework
https://github.com/IMAGINE-H2020/imagine_planning/blob/ms3_devep/csic_imagine_ros/csic_imagine_planning/csic_imagine_planner/d6_3/d6_3_demonstrator.ipynb
https://github.com/IMAGINE-H2020/imagine_planning/blob/ms3_devep/csic_imagine_ros/csic_imagine_planning/csic_imagine_planner/d6_3/d6_3_demonstrator.ipynb
https://github.com/IMAGINE-H2020/imagine_planning/blob/ms3_devep/csic_imagine_ros/csic_imagine_planning/csic_imagine_planner/d6_3/d6_3_demonstrator.ipynb

	Specification
	Main track
	Action Selector
	Replanner
	Generalizer

	Implementation
	Availability

